R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. IV Year I Semester Supplementary Examinations October/November-2025 ENTREPRENEURSHIP DEVELOPMENT

(Common to ECE, CSIT & CSE) Time: 3 Hours Max. Marks: 60 (Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I a Define Entrepreneurship. Explain the functions of Entrepreneur. CO₁ L1 **6M b** List out and explain the Qualities of an Entrepreneur. **CO1** L1 **6M** a Narrate the differences between Entrepreneurship & Intrapreneurship. **CO1 L3 6M b** Discuss in detail about the role of entrereneurship in economic **CO1** L1 **6M** development. UNIT-II a Explain the concept of Small Business. CO₂ L₂ **6M b** Discuss the role of MSME's in improving the economy. CO₂ L1 **6M** a What are the special forms of Business Ownership. CO₂ L1 **6M b** Explain the adavantages and disadvantages of Sole proprietorship. CO₂ L₂ **6M** UNIT-III a Differentiate between invention and Innovation. CO₃ L4 **6M b** Explain various methods of generating ideas and opportunities. CO₃ L₂ **6M** a Briefly explain the various sources of information for start-up CO₃ L₂ **6M** Entrepreneurs in India. **b** What are the problems of Start-ups without IPR's CO₃ L1 **6M** UNIT-IV a Explain in detail about McClelland's Acquired need theory. CO₄ **L2 6M b** What are the loans available for starting industrial Ventures in India. CO₄ L1 **6M** a What are the opportunities for Entrepreneurs in India. CO₄ L1**6M b** What are the various sources of finance for starting of an Entreprise. CO₄ L1 **6M** UNIT-V a Make a note on the features of project. CO₅ L3 **6M b** Discuss in detail about technical Faesibility. CO₅ L2 **6M** OR 10 a Explain project life cycle in project planning. L2 CO₅ 6M

b What are the financial requirements for the preparation of the project.

*** END ***

CO₅

L1

Q.P.Code:19CI0605

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. IV Year I Semester Supplementary Examinations October/November-2025 CRYPTOGRAPHY & NETWORK SECURITY

m:		(Computer Science & Information Technology)		- 1	i Š	
111	ne:	3 Hours		Max.	Mark	s: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)				
_		UNIT-I		10		
1		Specify the components of encryption algorithm.		CO ₁	L4	6M
	b	Explain about steganography.		CO ₁	L2	6M
		OR				
2		What are the principles of security?		CO ₁	L1	6M
	b	Describe the various security mechanisms.	100	CO ₁	L2	6M
1		UNIT-II				
3	a	What is the difference between block cipher and stream cipher?		CO ₂	L1	6M
	b	Extend the Diffie-Hellman Key Exchange.		CO ₂	L2	6M
		OR				89
4	a	List out the attacks to RSA and define each.		CO ₂	L1	6M
	b	List the steps in RSA algorithm.		CO ₂	L5	6M
		UNIT-III				
5	a	Differentiate MAC and Hash function.		CO3	L2	6M
	b	What are the applications of cryptographic hash function?		CO3	L1	6M
		OR		÷		
6	a	Describe Secure hash Algorithm in detail.		CO ₃	L2	6M
	b	What are the requirements for message authentication.		CO ₃	L1	6M
		UNIT-IV				El .
7	a	What are the parameters in TLS?		CO4	L1	6M
		Explain about wireless security.		CO4	L2.	6M
		OR		CO4	LLZ	OIVI
8	a	What protocols comprise TLS.		CO4	L1	6M
		List and briefly define the SSH protocols.		CO4	L1	6M
	ň.	UNIT-V		0.04	8	OIVI
9	0.			CO.		
:		Explain in detail about the security services for E-mail.		CO5	L2	6M
	D	Explain the operation description of PGP.		CO ₅	L2	6 M
10		OR		do.=		<i>-</i>
10		What is Cross site Scripting Vulnerability.		CO5	L1	6M
	D	List out the four principal services provided by S/MIME.		CO5	L1	6M
		*** END ***				

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR (AUTONOMOUS)

B.Tech. IV Year I Semester Supplementary Examinations October/November-2025 POWER QUALITY

		POWER QUALITY (Electrical & Electronics Engineering)	21		
Tir	ne:	3 Hours (Answer all Five Units 5 x 12 = 60 Marks)	Max.	Mar	ks: 60
		UNIT-1			
1	a	What is power quality? Why we are concern about power quality?	CO1	. L1	6M
	b	Explain about the power quality evaluation procedure.	CO1	L2	6M
		OR			
2	a	Explain the power quality terminology.	CO1	L2	6 M
	b	Draw and explain ITI curve.	CO1	L2	6M
		UNIT-II		4	
3	a	Explain the long duration voltage variations.	CO2	L2	6 M
	b	Classify the principles of regulating the voltage.	CO2	L2	6 M
		OR			
- 4		Explain the effect of line drop compensation on the voltage profile.	CO2	L3	12M
		UNIT-III			
5		What is harmonic distortion? Discuss about the voltage versus current	CO2	L3	12M
		distortion.			
		OR			
6		What are effects of harmonics? Explain harmonic distortion evaluation	CO2	L2	12M
		procedure?			
		UNIT-IV		10	i i
7	a	Write a short note on power quality monitoring standards.	CO3	L1	6M
	b	Explain about the flicker meters.	CO3	L2	6M
		OR			*
8		Explain about the permanent power quality monitoring equipment.	CO3	L3	12M
		UNIT-V			5)
9		What is the need for current limiter? Discuss the operation of a Solid-	CO4	L2	12M
		state current limiter.		9 0	e:
41		OR			
10		Explain the principle of DVR operation used for sag mitigation.	CO4	L3	12M
		*** END ***		14	

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. IV Year I Semester Supplementary Examinations October/November-2025 VLSI DESIGN

		(Electronics & Communication Engineering)		1 1	9
Ti	me	: 3 Hours	Max.	Marl	ks: 60
3		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I		- 3.	
1	a	Summarize the evolution of microelectronics.	CO ₁	L2	6M
	b	Illustrate about basic MOS transistors.	CO ₁	L2	6M
		OR			
2		Explain the steps involved in P-Well CMOS fabrication process with	CO2	L2	12M
œ		neat sketches.			
		UNIT-II			
3	a	Construct the stick diagram of a 2-input CMOS NAND gate.	CO ₃	L3	6M
	b	Illustrate design rules for wires and MOS transistors.	CO ₃	L2	6M
		OR	100		
4	a	Illustrate λ-design rules for contact cuts.	CO ₃	L2	6M
	b	How a P-MOS transistor formsin lambda-based design rules? Explain.	CO ₃	L1	6M
		UNIT-III			
5	a	Sketch 2 x 1 mux using transmission gates.	CO ₄	L3	6M
	b	Explain the implementation of AOI using CMOS design style with neat	CO4	L2	6M
		sketches.			
		OR			
6		Explain the following with an example	CO6	L2	12M
		(i) Domino CMOS logic. (ii) NOR A logic.			
		UNIT-IV			
7	a	Explain different adder designs in sub circuit design with neat sketches.	CO4	L2	6M
	b	Differentiate Comparator and Magnitude Comparator with example.	CO4	L4	6M
		OR	1		3
8		Summarize the following.	CO4	L2	12M
	-	(i) Unsigned magnitude comparator. (ii) Asynchronous Counters.			31
		UNIT-V			
9	à	Illustrate the architecture of FPGA with neat sketch.	CO6	L3	6M
	b	Discuss about the merits of FPGA over other PLD architectures.	CO5	L2	6M
		OR			8 11
10		Explain Chip Level Test techniques and its methodology.	CO6	L2	12M
		*** END ***			

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. IV Year I Semester Supplementary Examinations October/November-2025 CYBER SECURITY

		CI DEN SECURITI			
		(Computer Science & Engineering)		_140	
T11	ne:	3 Hours	Max.	Mark	:s: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I	720		
1	a	Define cybercrime and information security.	CO ₁	L1	6M
	b	Discuss about who are cybercriminals.	CO ₁	L2	6M
		OR	6		
2	a	Summarize about cybercrime in "the legal perspective"	CO1	L2	6M
	b	Summarize about cybercrime in "the Indian perspective"	CO1	L2	6M
59		UNIT-II			
3	a	——————————————————————————————————————	CO ₂	L2	6M
	b	Explain each type of Social Engineering in detail.	CO ₂	L2	6M
		OR			
4	a	What is Cloud Computing? Classify the types in it and list the	CO ₂	L4	6M
		advantages.		3	
	b	Discuss the security challenges in Cloud Computing.	CO ₂	L2	6M
		UNIT-III			
5	a	Compare Mobile Computing Vs Wireless Computing.	CO3	L5	6M
	b	Distinguish Malwares, viruses and worms.	CO3	L4	6M
		OR	COS	L	0171
6	a	Discuss the attacks on mobile or cell phones.	CO3	L2	6M
	b	Compare Mishing, Smishing and Vishing in detail.	CO ₃	L5	6M
6:	~	UNIT-IV		LS	OWI
7	a	Outline the purpose of proxy Server in detail	CO ₄	L2	6M
	b	Who are Anonymizers and how they get affected by scams in	CO ₄	L1	6M
		cybercrime? Explain.	15		
		OR	0		
8	a	Define DOS and DDOS.	CO4	L1	6M 8
		Apply the concept of Daniel of Service with an example and Explain.	CO4	L3	6M
or		UNIT-V		LIS	OIVI
9	a	What are the types of cookies? Explain in detail	CO5	L1	6M
	b	Discuss how to protect online protection	CO5	L2	6M
		OR		1	0111
10	a	Explain social computing for organizations.	CO5	L2	6M
		Explain social computing and associated challenges for organizations	CO5	L2	6M
		*** FND ***			OTAT

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS) B.Tech. IV Year I Semester Supplementary Examinations October/November-2025 SOFTWARE PROCESS & PROJECT MANAGEMENT

(Computer Science & Information Technology)

Tim	e:	3 Hours	Max. I	Viark:	s: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I			
1	a	What are six principles of software process change?	CO1	L1	6M
		List out CMMI maturity levels. Explain it.	CO1	L1	6M
		OR			
2	a	What is the importance of Software maturity Framework?	CO ₁	L1	6M
	b	Define Principles of Software Process Change. Explain the Six Basic	CO ₁	L1	6M
		Principles of SoftwareProcess Change.			
		UNIT-II			
3	a	Explain the elaboration phase in life cycle process.	CO ₂	L2	6M
	b	Explain the construction phase and transition phase in life cycle process.	CO ₂	L2	6M
		OR			
4	a	Examine pragmatic software cost estimation.	CO ₂	L1	6M
	b	Summarizes the differences in emphasis between engineering and	CO ₂	L5	6M
		production stages.			
		UNIT-III			
5	E	xplain the following milestones.	CO ₃	L2	12M
	i.	Life cycle objective milestones ii Life cycle architecture milestones			
		OR			
6	a	Interpret the sequence of life-cycle check points in major milestones.	CO ₃	L3	6M
	b	Demonstrate the typical minor milestones in life cycle of an iteration.	CO ₃	L3	6M
		UNIT-IV			
7	a	Outline the software development team activities.	CO4	L1	6M
	b	List out software assessment team activities.	CO4	L1	6M
		OR			
8	a	Describe the project environment in details.	CO ₄	L2	6M
	b	Define Round Trip Engineering. Explain it.	CO ₄	L1	6M
		UNIT-V			
9	a	Summarize the distinguishing characteristics of each CSCI.	CO5	L2	6M
	b	Explain about the incremental design process.	CO ₅	L2	6M
		OR			
10	a	Discuss about CCPDS-R case study.	CO ₅	L2	6M
	b	Summarize the schedule for the IPDR demonstration activities.	CO ₅	L2	6 M
		*** END ***			

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. IV Year I Semester Supplementary Examinations October/November-2025 HUMAN COMPUTER INTERACTION

(Common to CSE & CSIT)

Time	e: 3 Hours	Max. M	arks:	60
	(Answer all Five Units $5 \times 12 = 60$ Marks))		
	UNIT-I))	9.7	
1	Explain the general principle of User Interface design.	CO1	L1	12M
	OR		is i	
2	a Summarize history of the Screen design.	CO1	L2	6M
	b Analyze Xerox STAR's general principle.	CO ₁	L4	6 M
	UNIT-II			
3	a Explain in detail about determining basic business functions.	CO ₂	L2	6M
	b Discuss in detail about visually pleasing composition.	CO ₂	L3	6M
	OR			
4	a Justify amount of information in screen designing.	CO2	· L5	6M
	b Explain about screen navigation and flow.	CO ₂	L2	6M
	UNIT-III			
5	Explain about Device-based controls and Screen-based controls.	CO3	L2	12M
	OR		50.5	
6	a Discuss elaborately various components of a Window.	CO ₄	L3	6M
	b Construct various structures of menus with diagrams.	CO ₃	L4	6M
	UNIT-IV)7
7	a Analyze various kinds of testing techniques.	CO ₅	L4	6M
	b Categorize various graphics available while designing GUI in HCI.	CO5	L4	6M
	OR			
8	a Examine in detail colors and human vision in HCI.	CO ₅	L4	6M
	b What is an Icon? Explain different icons in detail.	CO5	L2	6M
	UNIT-V			10.
9	Examine the following term	CO6	L4	12M
	i) Indirect pointing devices			
	ii) Function keys of Keyboard			J = x
4.0	OR *	2	8 5	
10	a Discuss drivers in interaction devices.	CO ₆	L2	6 M
	b Write about the Borland J Builder interface building tool.	CO6	L3	6M
	*** END ***			

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. IV Year I Semester Supplementary Examinations October/November-2025 FIBER OPTIC COMMUNICATIONS

		FIBER OPTIC COMMUNICATIONS			
٠.		(Electronics & Communications Engineering)			
Ti	ime	e: 3 Hours	Max.	Marl	ks: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			90
		UNIT-I			
1	2	List the applications of optical fiber communication.	CO1	L1	6M
		Explain the ray theory transmission with neat sketch.	CO1	L2	6M
		OR			01/1
2	a	Illustrate the impact of group delays in optical communication.	CO ₂	L2	6M
		What is attenuation? Explain in detail.	CO2	L2	6M
		UNIT-II			OIVI
3	a		CO3	L2	6M
		Explain LED Structure with neat sketch.	CO3	L2	
	~	OR	COS	LL	6 M
4	a	T11	CO3	L2	6M
	b		CO3	L2 L4	6M
		carriers in the active region of a double heterojunction LED are 60 nsec	CO3	L	OIAT
		and 90 nsec respectively. Evaluate the total carrier recombination life			
		time and optical power generated internally if the peak emission			
		wavelength is 870 nm and drift current is 40 mA.	1911		
		UNIT-III	1.00	5	
5	a		CO3	L2	6M
		diagram:	COS	112	OIVI
	b	In GaAs Photodetector a pulse of 86ns emits 6*106 photons at 1300 nm	CO3	L3	6M
		wavelength. Average e-h pair generated are 6.4*10 ⁶ Calculate the	005	113	OIVI
		quantum efficiency of the detector.			
		OR			
6	a	Deduce the equation for S/N ratio of an optical fiber.	CO ₃	L 4	6M
		Compute the Bandwidth of a photo detector having the parameters as	CO3	L3	6M
		follows:Photo diode capacitance 3pf, amplifier capacitance 4 pf, load		20	UIVA
		resistance 60 Ω and amplifier input resistance is $1M\Omega$.	34		
		UNIT-IV			
7	a	What is bandwidth budget?	CO4	L2	6M
	b	Describe about power budget with examples.	CO4	L2	6M
		OR	CO4		OIVE
8	a	Explain the optical multiplexing and de-multiplexing techniques.	CO5	L2	6M
	b	An optical transmission system is constrained to have 600 GHZ channel	CO5	L2	6M
		spacing. How many wavelength channels can be utilized in the 1636 to	COS	114	OTAT
		1666nm spectral band?			
		UNIT-V			
9		Explain in detail about Optical network topologies.	COS	Т 2	10N#
,		OR	CO ₅	L2	12M
10	a	Explain the Performance of WDM+EDFA systems in optical networks	CO4	Υ.	CNA
		Discuss the basic concept of optical CDMA.	CO6	L2 L2	6M
	~	*** END ***	C00		6M
		END			

Q.P.Code: 19EE0231

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. IV Year I Semester Supplementary Examinations October/November-2025
NEURAL NETWORKS AND FUZZY LOGIC

		(Electrical & Electronics Engineering)	** **	10.7	:*
Ti	me	e: 3 Hours	Max.	Mark	ks: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I			
1	a	Explain organization of human brain.	CO1	L2	6M
	b	Discuss the functioning of biological neuron.	CO1	L2	6M
		OR	11	22	
2		Explain types of activation function & Explain Neural dynamics.	CO1	L3	12M
25,		UNIT-II	2		
3		Explain supervised learning and unsipervised in detail with block	CO2	L3	12M
		diagram.	147		#: #:
		OR	e. Logi	7	
4		Explain input layer, hidden layer &output layer computations in multi	CO2	L3	12M
		layer feed forward networks.			
		UNIT-III	8		
5		Briefly explain the working principle of hetero correlators.	CO3	L3	12M
		OR			K 14
6		Explain the working principle of BAM.	CO3	L3	12M
ii)		UNIT-IV	20		
7	a	Explain Operations performed on crisp sets.	CO4	L3	6M
	, b	Explain operations performed on fuzzy sets.	CO4	L3	6 M
		OR	- 2		
8		Explain Composition operation performed on fuzzy relation with	CO4	L3	12M
		example:			
		UNIT-V	163		
9	a	Explain fuzzy inference using Modus ponens and Modus tollens.	CO5	L3	6M
	b	List out different defuzzication methods available.	CO5	L3	6M
		OR		**************************************	
10	a	Explain Centre of gravity defuzzification method with an example.	CO5	L3	8M
	b	Briefly explain fuzzy logic control mechanism.	CO5	L3 =	4M
		*** FND ***			-

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. IV Year I Semester Supplementary Examinations October/November-2025 SOFT COMPUTING

(Common to CSIT & CSE)

	(Common to CSIT & CSE)			19
Tin	ne: 3 Hours	Max.	Marl	ks: 60
	(Answer all Five Units $5 \times 12 = 60$ Marks)			
	UNIT-I	× 40	70	
1	a Illustrate the basic components of Artificial Intelligence and its	CO ₁	L3	8M
	applications.			01.1
	b Compare soft computing and hard computing.	CO1	L4	4M
	OR		X	1113
2	Illustrate the Perceptron Network with neat diagram.	CO1	L3	12M
_	UNIT-II	7 12	113	1214
	· · · · · · · · · · · · · · · · · · ·	COO	T A	
3	Explain the Back propagation of Neural Network with neat diagram and	CO ₂	L2	12M
F1	flowchart.	50		
	OR	-	-1-	
·. 4	Describe the structure of back propagation neural network and derive the	CO ₂	L2	12M
	learning rule for the back propagation algorithm.			20 5
	UNIT-III			
5	a Explain with neat block diagram the various components of a Fuzzy	CO ₃	L2	8M
(4)	Logic System			
2.5	b Differentiate the fuzzy sets and classical sets.	CO3	L4	4M
	OR	15		× , * 1
6	Summarize the following terms:	CO3	L5	12M
	i) Fuzzy Arithmetic ii) Fuzzy Measures			
	UNIT-IV			
7	Explain the basic terminologies in Genetic Algorithm and illustrate the	CO4	L.2	12M
	working of GA?			
(2) i	OR			
8	a Explain the various cross over operations performed in GA.	CO4	L2	6M
U	b Illustrate the different bitwise operators in GA.	CO4	L3	6M
10	UNIT-V	7	110	W 0111
-		CO.5	Τ.	107/
9	Discuss in detail about Genetic learning of Rule Base and Knowledge	COS	LO	12M
	Base.			XII
	OR			÷
10	a Infer the characteristics of Neuro-fuzzy Hybrid System.	CO5	L3	6M
	b Describe the working principle of Neuro-fuzzy system learn?	C:O5	L2	6M
	*** END ***			

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. IV Year I Semester Supplementary Examinations October/November-2025 CLOUD COMPUTING

	100	CDOOD COME OF HAR			
T	im	e: 3 Hours (Common to CSIT & CSE)	2 1		_
-			Max	. Mar	ks: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I		_ 8	2
1	a	The second second second desired with the internet.	CO ₁	L2	• 6M
	b	Discuss the various Distributed System Design objectives.	CO ₁	L2	6M
		OR		1	
2	a	Differentiate between parallel and distributed computing Paradigms.	CO1	L4	6M
	b		CO1	L2	6M
		UNIT-II	001		OIVI
3	a	TO 10 10 10 10 10 10 10 10 10 10 10 10 10	000	ريا	
5			CO2	L6	6M
	U	Identify the Approaches in SLA Management.	CO ₂	L1	6M
4		OR			
4	a	The state of the s	CO ₂	L 4	6M
2	b	Outline the importance of Hybrid Cloud.	CO ₂	L5	6M
		UNIT-III			0.
5	a	Illustrate Hypervisor and Xen Architecture.	CO ₃	L4	6M
	b	Discriminate the Binary Translation with Full Virtualization.	CO3	L4	6M
		OR	74	L	NA OIVI
6	a	Analyze the Hardware Support for Virtualization.	CO3	L4	6M
	b		CO3	L4	6M
		UNIT-IV	CO3	L	OIVI
7	_	· · · · · · · · · · · · · · · · · · ·			
,		Explain the key issues in the cloud.	CO6	L2	8M
	b	Who are cloud service providers?	CO6	L1	4M
		OR		-	
- 8	_	Explain about Authorization Methods.	CO ₆	L2	6M
	b	What are the services provided by IAM?	CO ₆	L2	6M
ă.		UNIT-V			
9		Explain about general security in mobile cloud computing.	CO6	L2	12M
		OR		3 0	12111
10	a	Write about data access in mobile cloud computing.	CO6	L1	6M
		List out the applications of mobile cloud computing?	CO6		6M
		or moone of moone of our companies;		L1	6M

*** END ***

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech. IV Year I Semester Supplementary Examinations October/November-2025

		WIRELESS COMMUNICATIONS		1-202	40
- ×		(Electronics & Communications Engineering)			2
T1	me	e: 3 Hours	Max.	Mar	ks: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I			
1	Ι.	a Discuss briefly about the evolution of Mobile radio communication.	CO1	L1	6M
		b Tabulate list of terms used to describe various elements of wireless communication systems.	CO1	L1	6M
_		OR			
2		a How cellular frequency reuse concept is useful in allocating same frequency channels in various cluster of cells.	CO6	L2	6M
]	Classify the channel assignment strategies and explain in detail. UNIT-II	CO5	L4	6M
3		How the received signal strength is predicted using the free space propagation model? Explain?	CO3	L1	6M
	ł	of dBm, dBW. If 50W is applied to a unity gain antenna with 900MHz	CO5	L4	6M
		carrier frequency, find the receiver power in dBm at a free space distance of 100m from the antenna. What is Pr (10 km)? Assume unity gain receiver antenna.			
		OR			
4	a	(ii) Explain multiple knife-edge diffraction.	CO1	L1	6M
	b	Find the Fraunhoher distance for an antenna with maximum dimension of 1m and operating frequency of 900MHz.If antenna have unity gain. Calculate the path loss?	CO1	L3	6M
					5
5	ล	Describe small-scale multipath propagation.			-
	h	Describe the factors influencing small scale fading in the radio propagation	CO2	L2	6 M
		channel.	CO1	L1	6M
6	a	Evaluate slow fading due to Doppler spread.	CO2	т.4	CN #
	b	Carron out = a 41 i m 1 d 1 d	CO3	L4 L2	6M 6M
		UNIT-IV			
7	a	Explain about fundamentals of Equalization.	CO4	L2	6M
	b	Explain the basic structure of an adaptive equalizer with neat diagram. OR	CO4	L2 L2	6M
8	a	Describe about macro diversity and express the mathematical representation of macro diversity.	CO4	L2	6M
	b	Explain about micro diversity in wireless communication. UNIT-V	CO1	L2	6M
9		Explain the multiple access scheme for narrowband systems and wideband systems.	CO1	L2	6M
	b	Describe the features of the frequency division multiple access (FDMA) scheme.	CO1	L2	6M
10		OR			
10	a b	Explain capacity in non-fading channels. Derive the expression for capacity in fading channels.	CO2 CO2	L2 L3	6M 6M
		*** END ***			

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. IV Year I Semester Supplementary Examinations October/November-2025 ELECTRICAL DISTRIBUTION SYSTEMS

	ELECTRICAL DISTRIBUTION SYSTEMS	15		
	(Electrical & Electronics Engineering)			
Tir	ne: 3 Hours	Maz	k. Ma	rks: 60
	(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I	· ·	: 4	k . sež
1	Discuss the relationship between load factor and loss factor.	CO1	L4	12M
	OR .		7545	2
2	a Define and explain the terms feeder, distributor & service mains with diagram.	CO1	L1	6M
	b Discuss about Diversity factor and Coincidence factor. UNIT-II	CO1	L3	6M
3		CO2	T.3	12M
	in A.C. distributor with vector diagram.	002	LIS	12111
	OR		.50	
4	a Discuss importance of voltage drop and power loss calculations in distribution.	CO2	L3	6M
,	b Explain with neat sketches radial type and loop type primary feeders. UNIT-III	CO2	L2	6M
5		CO3	L1	6M
	b What are the disadvantages of ungrounded system?	CO3	L1	6M
6	OR Explain how do you analyze a substation service area with 'n' primary	CO3	L1	12M
	feeders.			
	UNIT-IV			
7	A single phase A.C. Generator supplies the following loads: (i) Lighting	CO ₄	L4	12M
Si	load of 20 kW at unity power factor. (ii) Induction motor load of 100 kW		Si .	
	at P.F. 0.707 lagging. (iii) Synchronous motor load of 50 kW at P.F 0.9	2		
	leading. Calculate the total KW and KVA delivered by the generator and			
	the power factor at which it works.			" 10 (
0	OR			
8	a Determine the optimum capacitor allocation for improvement of power factor.	CO4	L1	6M
	b List the various causes of low power factor and explain. UNIT-V	CO4	L1	6M
9	Explain the distribution system Project planning with diagram. OR	CO5	L3	12M
10	a What is communication ?Give Methods of Communication.	CO6	Lİ	6M
-	b Explain about Sensors.		L1	6M 6M
	ALL TINTO LLL		LI	OTAT

*** END ***

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech. IV Year I Semester Supplementary Examinations October/November-2025 DIGITAL IMAGE PROCESSING

D. 1 CC1	DIGITAL IMAGE PROCESSING	, CIII DC	1-2020	
Time	(Electronics & Communications Engineering) : 3 Hours	Mov	Marks	60
Time	(Answer all Five Units $5 \times 12 = 60$ Marks)	max.	Maiks	s. 00
	UNIT-I			
1 a	Demonstrate the Arithmetic operations on digital images with relevant expressions.	CO1	L2	6M
b	Discuss the different types of spatial operations on digital images with relevant expressions.	CO1	L2	6M
	OR			
2 a	Discuss the components of digital image processing along with the suitable block diagram.	CO1	L2	6M
b	Summarize the three principal sensor arrangements used to transform illumination energy into digital images.	CO1	L3	6M
	UNIT-II			
3 a	Discuss the properties of Unitary transforms.	CO ₂	L2	6 M
b	1	CO ₂	L4	6 M
1 0	OR Compute How transform for the given image	CO2	L4	6M
4 a	Compute Harr transform for the given image.	COZ	L4	OIVI
	$f(m,n) = \begin{bmatrix} 4 & -1 \\ 2 & -3 \end{bmatrix}$			
b	Define KL Transform and give its applications. UNIT-III	CO2	L2	6M
5 a	Draw the functional block diagram of pseudo colour processing and explain each block.	CO3	L4	6M
b	Explain the method of converting colours from RGB to HSI.	CO3	L3	6 M
	OR			
6 a	Illustrate the contrast stretching in image enhancement with suitable example.	CO3	L2	6M
b	Explain the sharpening filters in frequency domain along with the required expressions.	CO3	L3	6M
	UNIT-IV			
7 a	Draw the degradation/restoration model in image processing and	CO4	L4	6M
	describe the each part presented on it.			
b	Explain the Rayleigh noise and Erlang noise with proper PDF expression.	CO4	L3	6M
0	OR	CO.	τ Δ	CAM
	Illustrate the Clustering techniques for image segmentation with example.			6M
b	Explain the concept of Laplacian of Gaussian (LoG) operator for edge detection.	CO5	L3	6M

UNIT-V	,
OTALL A	

9	a	Discuss the Objective fidelity criteria and subjective fidelity criteria with suitable example.	CO6	L2	6M
	b	Elucidate the functional block diagram of a general image compression system with neat sketch.	CO6	L4	6M
		OR			
10	a	Describe the procedure for Huffman coding for image compression method.	CO6	L2	6M
	b	Compare the adaptive transform coding and non- adaptive transform coding.	CO6	L4	6M

*** END ***

H.T.No. O.P.Code: 19EE0227 **R19**

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech IV Year I Semester Supplementary Examinations October/November-2025 POWER SEMICONDUCTOR DRIVES

Time	(Electrical and Electronics Engineering) 2: 3 Hours	Max.	Mark	s: 60
	(Answer all Five Units $5 \times 12 = 60$ Marks)			
	UNIT-I			
1	With a neat circuit diagram, explain the operation of a 1-\$\phi\$ fully controlled converter fed a separately excited DC motor. Illustrate its	CO1	L3	12M

OR

- 2 A 1-φ, 230 V, 50 Hz supply feeds a separately excited DC motor CO1 through two 1-φ semi-converters, one for the field circuit and the other for the armature circuit. The firing angle of the semi-converter in the field circuit is zero. The field resistance is 200 Ω and the armature resistance R_a is 0.3 Ω . The motor develops a load torque of 50 N-m at 900 rpm. The voltage constant is 0.8V/A-rad/sec and the torque constant is 0.8 N-m/A². Assume that the armature and field currents are continuous and constant, and neglect the losses. Determine the,
 - i). field current,
 - ii). firing angle and

speed-torque characteristics.

iii). power factor of the armature semiconverter.

UNIT-II

3 Explain the operation of a single-phase dual converter fed a separately CO2 excited DC motor in non-circulating current mode. Sketch the output voltage and current waveforms.

OR

Explain the different types of electrical braking methods used in CO2 4 L2 **12M** electrical drives and discuss their relative advantages and limitations.

UNIT-III

Explain the operation of a two-quadrant chopper-fed separately excited 5 DC motor drive. Draw the circuit diagram, associated waveforms, and speed-torque characteristics.

OR

- A DC series motor is speed controlled by a chopper from a 600 V DC 6 source. The armature and field resistances are 0.05 Ω and 0.07 Ω respectively. The armature current is continuous and ripple-free with an average value of 500A. The back emf constant is $K_t = 15.27 \text{ mv/A}$ rad/sec. If the duty cycle of the converter is 60%. Determine the,
 - i). power drwan from the input source,
 - ii). equivalent output resistance of the converter,
 - iii). motor speed and developed torque.

UNIT-IV

7 Explain the speed-torque characteristics of a three-phase induction CO4 12M motor operating under stator voltage control.

OR

8 Explain why the static Kramer drive cannot be used for super CO4 12M L2 sychronous speed ranges with neat sketch. Support the explanation with necessary reasons.

L3

L2

L3

L3

CO₃

12M

12M

12M

UNIT-V

9 Describe the separately controlled mode and self-controlled mode of CO5 L2 12M operation of a synchronous motor drive in detail. Compare their performance characteristics.

OR

- A 5 MW, 3-phase, 11 kV, star-connected, 6-pole, 50 Hz, 0.9 leading power factor synchronous motor has a synchronous reactance of 10 Ω and armature resistance equal to 0 Ω . The rated field current is 50 A. The machine is operated under variable frequency control at constant V/F ratio up to the base speed and constant voltage above the base speed. Determine the,
 - i). torque and field current for a rated armature current at 750 rpm and 0.8 leading power factor,
 - ii). armature current and power factor for half of the rated motor torque at 1500 rpm and rated field current.

*** END ***

L3

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. IV Year I Semester Supplementary Examinations October/November-2025 SOFTWARE PROJECT MANAGEMENT

(Computer Science Engineering)

Time: 3 Hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

a Describe the categories of software projects.

CO₁ L2 **6M**

b Explain the process of setting objectives within software project CO1

L₂ **6M**

management.

OR

a Discuss in detail the activities and methodologies in planning a project.

CO1 L₂ **6M**

b Explain the concept of management control with suitable examples.

CO₁ L2 **6M**

UNIT-II

a Demonstrate the working of the Spiral Model of software development **6M** illustrating its phases with a neat labeled diagram.

b Determine the phases of the Rapid Application Development (RAD) CO2

6M

model with suitable examples.

OR

a Illustrate the concept of Software Prototyping in the Software CO2 L3 **6M** Development Life Cycle (SDLC) with a neat diagram.

b Apply the idea of software prototyping to a software development CO2

6M

scenario to validate the unclear requirements.

UNIT-III

a Assess the objectives of activity planning in project management.

CO₃

6M L3

b With a neat sketch, describe the sequencing and scheduling process in CO3

6M

activity planning.

OR

a Evaluate the Critical Path Method (CPM) by performing forward and CO3 L3 **6M** backward pass computations on a given project network.

b Illustrate different activity-based approaches involved in activity CO3

6M

planning.

UNIT-IV

7 a Discuss in detail the review process to ensure software quality during CO4 **6M** development.

b Explain the activities and evaluation criteria of a project termination CO4 L2 **6M** review in assessing project success. OR a Explain cost monitoring in project control with a simple example. **CO4 L2 6M b** Elucidate the process of Software Configuration Management (SCM) **CO4** L₂ **6M** control. UNIT-V a Detail the various methods of staff selection used in organizations. CO₅ L₂ **6M** b Identify the most effective methods for selecting candidates in a CO5 L3 **6M** technical organization. Justify your choice. OR 10 a Explain the Hackman and Oldham Job Characteristics Model and its CO5 L₂ **6M** dimensions. How can each characteristic be applied to enhance productivity in a software development team?

*** END ***

b Demonstrate how effective decision-making techniques and tools CO5

support project success in software development.